3.1.7 \(\int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx\) [7]

3.1.7.1 Optimal result
3.1.7.2 Mathematica [C] (verified)
3.1.7.3 Rubi [A] (verified)
3.1.7.4 Maple [A] (verified)
3.1.7.5 Fricas [F]
3.1.7.6 Sympy [F]
3.1.7.7 Maxima [F]
3.1.7.8 Giac [A] (verification not implemented)
3.1.7.9 Mupad [F(-1)]

3.1.7.1 Optimal result

Integrand size = 38, antiderivative size = 97 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\cos (e+f x) \sqrt {a+a \sin (e+f x)}}{c f (c-c \sin (e+f x))^{3/2}}+\frac {a \cos (e+f x) \log (1-\sin (e+f x))}{c^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \]

output
cos(f*x+e)*(a+a*sin(f*x+e))^(1/2)/c/f/(c-c*sin(f*x+e))^(3/2)+a*cos(f*x+e)* 
ln(1-sin(f*x+e))/c^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)
 
3.1.7.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.83 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.07 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\frac {\sec (e+f x) \sqrt {a (1+\sin (e+f x))} \left (2-i f x+2 \log \left (i-e^{i (e+f x)}\right )+\left (i f x-2 \log \left (i-e^{i (e+f x)}\right )\right ) \sin (e+f x)\right )}{c^2 f \sqrt {c-c \sin (e+f x)}} \]

input
Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^( 
5/2),x]
 
output
(Sec[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*(2 - I*f*x + 2*Log[I - E^(I*(e + 
f*x))] + (I*f*x - 2*Log[I - E^(I*(e + f*x))])*Sin[e + f*x]))/(c^2*f*Sqrt[c 
 - c*Sin[e + f*x]])
 
3.1.7.3 Rubi [A] (verified)

Time = 0.78 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.08, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.237, Rules used = {3042, 3320, 3042, 3218, 3042, 3216, 3042, 3146, 16}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(e+f x) \sqrt {a \sin (e+f x)+a}}{(c-c \sin (e+f x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (e+f x)^2 \sqrt {a \sin (e+f x)+a}}{(c-c \sin (e+f x))^{5/2}}dx\)

\(\Big \downarrow \) 3320

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{3/2}}{(c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {(\sin (e+f x) a+a)^{3/2}}{(c-c \sin (e+f x))^{3/2}}dx}{a c}\)

\(\Big \downarrow \) 3218

\(\displaystyle \frac {\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a \int \frac {\sqrt {\sin (e+f x) a+a}}{\sqrt {c-c \sin (e+f x)}}dx}{c}}{a c}\)

\(\Big \downarrow \) 3216

\(\displaystyle \frac {\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}-\frac {a^2 \cos (e+f x) \int \frac {\cos (e+f x)}{c-c \sin (e+f x)}dx}{\sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}}{a c}\)

\(\Big \downarrow \) 3146

\(\displaystyle \frac {\frac {a^2 \cos (e+f x) \int \frac {1}{c-c \sin (e+f x)}d(-c \sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}}{a c}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {\frac {a^2 \cos (e+f x) \log (c-c \sin (e+f x))}{c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {a \cos (e+f x) \sqrt {a \sin (e+f x)+a}}{f (c-c \sin (e+f x))^{3/2}}}{a c}\)

input
Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(5/2),x 
]
 
output
((a*Cos[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/(f*(c - c*Sin[e + f*x])^(3/2)) 
+ (a^2*Cos[e + f*x]*Log[c - c*Sin[e + f*x]])/(c*f*Sqrt[a + a*Sin[e + f*x]] 
*Sqrt[c - c*Sin[e + f*x]]))/(a*c)
 

3.1.7.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3146
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m 
_.), x_Symbol] :> Simp[1/(b^p*f)   Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x 
)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && I 
ntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/ 
2])
 

rule 3216
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)]], x_Symbol] :> Simp[a*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x 
]]*Sqrt[c + d*Sin[e + f*x]]))   Int[Cos[e + f*x]/(c + d*Sin[e + f*x]), x], 
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0 
]
 

rule 3218
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^ 
(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Simp[b*((2*m - 1)/(d*( 
2*n + 1)))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), 
 x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b 
^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && GtQ[2*m + 
n + 1, 0])
 

rule 3320
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_ 
.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/ 
2)*c^(p/2))   Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(n + 
p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && 
EqQ[a^2 - b^2, 0] && IntegerQ[p/2]
 
3.1.7.4 Maple [A] (verified)

Time = 0.25 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.31

method result size
default \(\frac {\left (\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )-2 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right ) \sin \left (f x +e \right )+2 \sin \left (f x +e \right )-\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )+2 \ln \left (\csc \left (f x +e \right )-\cot \left (f x +e \right )-1\right )\right ) \sqrt {a \left (1+\sin \left (f x +e \right )\right )}\, \sec \left (f x +e \right )}{f \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, c^{2}}\) \(127\)

input
int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x,method=_R 
ETURNVERBOSE)
 
output
1/f*(ln(2/(1+cos(f*x+e)))*sin(f*x+e)-2*ln(csc(f*x+e)-cot(f*x+e)-1)*sin(f*x 
+e)+2*sin(f*x+e)-ln(2/(1+cos(f*x+e)))+2*ln(csc(f*x+e)-cot(f*x+e)-1))*(a*(1 
+sin(f*x+e)))^(1/2)/(-c*(sin(f*x+e)-1))^(1/2)/c^2*sec(f*x+e)
 
3.1.7.5 Fricas [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="fricas")
 
output
integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^ 
2/(3*c^3*cos(f*x + e)^2 - 4*c^3 - (c^3*cos(f*x + e)^2 - 4*c^3)*sin(f*x + e 
)), x)
 
3.1.7.6 Sympy [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {\sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \cos ^{2}{\left (e + f x \right )}}{\left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {5}{2}}}\, dx \]

input
integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(5/2),x)
 
output
Integral(sqrt(a*(sin(e + f*x) + 1))*cos(e + f*x)**2/(-c*(sin(e + f*x) - 1) 
)**(5/2), x)
 
3.1.7.7 Maxima [F]

\[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int { \frac {\sqrt {a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="maxima")
 
output
integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(5 
/2), x)
 
3.1.7.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.93 \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=-\frac {{\left (2 \, \sqrt {c} \log \left ({\left | \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {\sqrt {c} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}\right )} \sqrt {a}}{c^{3} f \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \]

input
integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(5/2),x, al 
gorithm="giac")
 
output
-(2*sqrt(c)*log(abs(sin(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(cos(-1/4*pi + 1/2 
*f*x + 1/2*e)) + sqrt(c)*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))/sin(-1/4*pi + 
 1/2*f*x + 1/2*e)^2)*sqrt(a)/(c^3*f*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)))
 
3.1.7.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(e+f x) \sqrt {a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{5/2}} \, dx=\int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {a+a\,\sin \left (e+f\,x\right )}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \]

input
int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(5/2) 
,x)
 
output
int((cos(e + f*x)^2*(a + a*sin(e + f*x))^(1/2))/(c - c*sin(e + f*x))^(5/2) 
, x)